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By considering the zeros of the partit ion function, we establish the following 
results for the Potts model on the square, triangular, and honeycomb 
lattices: (i) We show that there exists only one phase transit ion; (ii) we give 
an exact determination of the critical point;  Off) we prove the exponential 
decay of the correlation functions, in one direction at least, for all tempera- 
tures above the critical point. The results are established for q i> 4, where q 
is the number  of  components.  

KEY W O R D S :  Potts mode l ;  critical po in t ;  zeros of partit ion function ; 
correlation function. 

1. INTRODUCTION 

The critical point of the Potts model was first conjectured for the square 
lattice by Potts ~1~ using the Kramers-Wannier argument ~2~ in conjunction 
with an assumption of the uniqueness of the transition. The conjecture has 
since been extended to the triangular and honeycomb lattices ~3.4~ under more 
stringent conditions. While it has been established that a transition indeed 
occurs at these conjectured points, ~4'5) the uniqueness of the transition has 
not been proven and, consequently, the determination of the Potts critical 
point remains very much an unsettled question. 

We present in this paper an analysis of the Potts model which leads to 
an exact determination of its critical point for the square, triangular, and 
honeycomb lattices. In addition to confirming the previous conjectures, our 
analysis also establishes the uniqueness of the transition. We also prove that 
the correlation functions decay exponentially above the critical point. 
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Our analysis is based' on the consideration of the zeros of the Potts 
partition function. Generally, the zeros of the partition function of a thermo- 
dynamic system trace a certain locus in the complex inverse temperature 
/3 = 1/kT plane, and a phase transition occurs at the point where the locus 
crosses the positive/3 axis3 6> The strategy of our consideration is then to 
determine the region in the neighborhood of the positive 13 axis that is free of 
zeros. To carry out such an analysis we first convert the Potts model into a 
vertex model ~5'~ for which some information on the zero distribution is 
known:  8> Since there is only one complex variable, namely/3, arising in the 
Potts model, the fugacity z in the vertex model is actually temperature 
dependent. We next let z become independent and consider more generally 
the partition function Z(/3, z) of the vertex model. This permits the use of the 
circle theorem due to Suzuki and Fisher, ~8~ which states that Z(/3, z) is 
free of zeros for t3 real and Izl ~ 1. We further establish in the appendix that 
Z(/3, z) is free of zeros for small Izl and/3 in a neighborhood of the positive 
axis. Combining these two results and making use of the Lebowitz-Penrose 
Lemma, ~9~ we then deduce that Z(/3, z) is in fact free of zeros for all [z I ~ 1 
and/3 in a neighborhood of the positive axis. Returning now to the Potts 
model for which z = z(fl), this implies that the Potts free energy can be 
nonanalytic in/3 only at [z(/3)[ = 1; this in turn leads to a unique critical 
point. In Section 3 we sketch a proof  which establishes the exponential 
decay of the correlation functions for all temperatures above the critical 
point. 

Due to technical reasons, our results are established strictly only for 
q /> 4, where q is the number of components in the Ports model. Since the 
q = 2 (Ising) model is exactly soluble, this leaves only the q = 3 Potts model 
unsettled for the time being. 

2. P O T T S  C R I T I C A L  P O I N T  

It was established by Baxter et a l :  ) that the partition function Zzr of 
the Potts model on a planar lattice L of N sites is related to the partition 
function Zn' of an ice-rule vertex model on a related medial lattice L' by the 
relation 

ZN = qN/2ZN' (i) 

The medial lattice is essentially the covering lattice of L, constructed by 
connecting the midpoints of adjacent edges of L. For example, as illustrated 
in Figs. 7 and 8 of Ref. 7, the medial lattice of a square lattice is also square, 
and that of the triangular and honeycomb lattices is the Kagom6 lattice. The 
vertex configurations of the ice-rule model are shown in Fig. la, where the 
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X7 X 8 X6 X5 Xl X2 

Fig. 1. (a) The ice-rule vertex configurations of the medial lattice and the associated spin 
configurations. The shaded regions denote the faces occupied by the sites of the Potts 
lattice. (b) The corresponding Ising configurations X~ and their weights wj as defined in 
Ref. 17. 

shaded regions denote the faces of  L '  occupied by the sites o f  L. In the nota-  
tions of  Ref.  7, the vertices have the following weights: 

{~ol ..... ~o6} = {1, 1, x , ,  x~, At, B~} (2) 

where 

with 

(At, BT) = (s -1 + XTS, s + x~s -1) square 

= (t -1 + xr t  2, t + x d  -2) t r iangular  (3) 

s = e ~ t = e ~ cosh 0 = V'q'/2 

Xr = Ur/'V/q, /'/r = exp(fler) -- 1 (4) 

Here ,  ~r > 0 is the interaction in the Potts  model  between neighboring sites 
on edges of  L in a given direction r, r = 1, 2 ( = 1 ,  2, 3) for  the square 
( tr iangular)  lattice. There is no need to consider the honeycomb lattice 
separately since the tr iangular  and honeycomb Potts  models  are related by a 
duality relation. (1~ We have also included in Fig. la  a spin representat ion o f  
the vertex configurations, obtained by assigning a spin cr to each ar row such 
that  cr = + 1 ( - 1 )  if, crossing the ar row f rom the shaded region to the 
unshaded region, the ar row points toward one 's  right (left). We also r emark  
tha t  the vertex model  (2) offers a natural  extension of  the Potts  model  to 
nonintegral  values of  q, which we shall assume to be the case. 

Next  we generalize the vertex weights (2) into a fo rm reflecting the ice- 
rule restriction. Observe that  if all arrows on the edges in a given direction are 
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reversed, vertices (5) and (6) are converted to either the source or the sink of 
arrows. The conservation of arrows then implies the following relation: 

nr5 q- n~,6 = nr6 + n~,5, r v~ r '  (5) 

where n~ (n~6) denotes the number of the (5) [(6)] vertices on the type r edge 
of L. As a consequence of (5), the partition function ZN' is unchanged if we 
use the following vertex weights in place of (2): 

{~ol ..... oJ6} = {1, 1, x~ , Xr , blrAr, Ur- l Br} 

- {1, 1, Xr, X,., CrZ, C,.Z -1} (6) 

provided that we take 

ulu2 = 1 square 
(7) 

ulu2u3 -- 1 triangular 

A similar argument leading to (6) can be found in Ref. 4. 
Now, the variables cr and z given by 

cr 2 = A~Br (8)  

z 4 = A1A2/B1B2 square 
(9) 

z 6 = A1A2Aa/B1B2Ba triangular 

are both functions of the inverse temperature 13 of the Potts model. In order 
to make use of an established theorem on the zeros of a partition function, 
we now generalize the partition function ZN' by regarding z in (6) as an 
independent variable and consider Zu' = Z~r'(fi, z) .  Any conclusion so reached 
for Z S ( f l ,  z)  can obviously be specialized to the Ports model by once again 
introducing (9). Note that Zu'( f i ,  z )  is invariant under the change z ~ z-  1, 
since a reversal of all arrows results in only an interchange of the weights 
~o5 and oJ6 in (6). 

To locate the zeros of ZN'(fi, z) in the complex z plane for real/3, we make 
use of a generalized Lee-Yang circle theorem due to Suzuki and Fisher. (8) 
Identifying z in (6) as the same variable z appearing in Eq. (2.3) of Ref. 8, 
and using the spin representation of the vertex configurations shown in 
Fig. la, we see that the partition function ZN'(/3, Z) is in precisely the form of 
that occurring in the Suzuki-Fisher (SF) theorem. For  real/3 and 

q > 4 (10) 

the variables xr and c~ are both real, so that the condition (A) of the SF 
theorem is fulfilled. It is also readily verified that the condition (B) of the 
SF theorem holds under the same conditions. It then follows from the SF 
theorem that the zeros of ZN'(/3, z) lie on the unit circle in the complex z plane 
for real/3 and q > 4. 
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Since ZN'(/3, z) N [z[-M for small [z l, where M = 2N and 3N, respec- 
tively, for the square and triangular lattices L, it proves convenient to con- 
sider, instead of ZN', the function 

Fu(/3, z) = zUZu'(/3, z) (11) 

which is a polynomial of degree 2M in z. Using (6), we see in particular that 

FN(/3, 0) = c "  (12) 

where 

This permits us to write 

C = ~ c~. (13) 
T 

2M 

F,,(/3, z)  = (1 - z /z , )  (14)  
i = l  

where zi are the 2M zeros of Fn(/3, z) satisfying [z~J = 1 for real/3 and q > 4. 
Consider now the function 

aN(/3, z) = [FN(/3, z)] -1 (15) 

We have established that: 

(i) FN(/3, z) # 0 for Izl # 1,/3 real, and q > 4. 

We shall also establish in the appendix that: 

(ii) F~(/3, z ) # 0  for all[z[ < 8 a n d R e / 3 / >  0, lira/31 < r  4, 
where E = supr ~r and 3 is some strictly positive constant depending 
only on {~r}. 

Furthermore, (14) implies the following bound on GN(/3, z): 

(iii) GN(/3, z) <~ C-Z~I~ (1 - Iz/z,i) 
i 

= C-U(l - l z l )  -2M (16) 

The function GN(/3, z) now satisfies precisely the conditions of the 
Lebowitz-Penrose Lemma (9) for a function of two variables. Applying the 
Lemma, we conclude that: 

(iv) FN(/3, z) # 0 for all Izl r 1, q > 4, and/3 in some neighborhood 
of the positive real axis, the region of the neighborhood being 
uniform with regard to N. 

Now z(/3) is real analytic in/3. It follows from (iv) that for q > 4, the 
partition function ZN(/3) of the Potts model is free of zeros in/3, when/3 is 
in a complex neighborhood D of [0, tic) of (tic, oo], where/3~ =/3c(q) is given 
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by z(/3c) = 1. In fact, this conclusion holds also for q = 4, provided that we 
take 

/3c(4) = lim /3,(q) (17) 
q ~ 4 +  

This is permitted because ZN(/3) is a polynomial in e B whose coefficients are 
continuous functions of q. Consequently, the zeros of the polynomial also 
depend on q continuously. 

Following the standard arguments, (m we now conclude that, for q ~> 4, 
the free energy of the Potts model, 

f(/3) = lira ( I /M) lnZN(/3) (18) 
N--* oV 

is a real analytic function of/3 when/3 is positive, except possibly at/3~. To 
determine/3~, we use (9) and the condition z(/3~) = 1 to obtain 

x~x2 = 1 square 

V'q xlx2xa + xlx2 + x2x3 + xsx l  = 1 triangular (19) 

"r + x l  + x2 + xa = xlx2xa honeycomb 

Here we have used the duality relation (1~ x,-Xr* = 1 to relate the triangular 
and the honeycomb lattices. 

Two comments are in order at this point. First we comment on the 
limitation of our results to q >I 4. For 0 < q < 4, conditions (A) and (B) of 
the Suzuki-Fisher theorem no longer hold and the locus of the zeros of 
ZN'(/3, z) is not known. However, numerical results (m indicate that the zeros 
do leave the unit circle, and, in fact, z(/3) lies on the unit circle for/3 real. It is 
clear that the strategy of the proof would be very different. This seems to 
confirm the change of the analytic properties of the Potts model found to 
exist at q = 4. (*.5~ We wish to point out, however, that the critical point (19) 
does coincide with the exact (Ising) result at q = 2, and agrees with the 
previously conjectured critical point (3,4~ including the q = 1 limit of the bond 
percolation. (12~ 

Finally, we comment that, strictly speaking, our analysis establishes only 
the fact that the nonanalyticity off(/3), if any, can occur only at/3c. Now it has 
been explicitly established that f(fl) is indeed nonanalytic in/3 at 13~.(4,5~ It 
follows that the Potts model has only one critical point, and that the critical 
point is given by (19). 

3. C O R R E L A T I O N  F U N C T I O N S  

An interesting consequence of our analysis is that it allows us to establish 
the exponential decay of the correlation functions, for all temperatures above 
the critical temperature. We outline here the main steps of the proof. 
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First of all, our result on the zeros of the partition function remains 
true if, instead of using the free boundary conditions, we take a boundary 
condition such that the lattice is periodic in one direction. For  the lattice is 
then still planar and all steps of our proof including the adoption of the 
result of Ref. 7 remain unchanged. In particular, a transfer matrix formula- 
tion of the partition function can be formulated, and there exists a domain D 
in the u = e ~ - 1 plane containing the origin and the segment [0, exp(flc) - 1 ] 
such that Z:~(fl) r 0 when u e D. Also, it has been shown by Israel (~a~ that 
when ]u I < c, where c is some constant, ZN(fl) ~ 0 and the correlation func- 
tions decay exponentially. These two facts now permit the use of a theorem 
due to Penrose and Lebowitz (~4~ to conclude that the gap between the largest 
and the second largest eigenvalues of the transfer matrix remains nonzero, 
uniformly in N, when u ~ D. But since this gap is a Tower bound to the 
coherence length in the direction of periodicity along which the transfer 
matrix is defined, it follows that the correlation functions decay exponentially 
in the direction of  periodicity for all u e D, and hence for all 0 < fl < tic. 
This establishes the stated result. Details of the proof  follow closely that of 
Ref. 14 for the lattice gas, and will not be reproduced. 

A P P E N D I X .  P R O O F  O F  P R O P E R T Y  ( i i )  

We establish in this appendix the property (ii) on the zeros of  the 
function FN(fl, z). The strategy here is to use the spin representation of  the 
six-vertex model shown in Fig. la, and consider this as a constrained Ising 
model. The Asano contraction technique(19~ is then applied to yield the desired 
property. 

The idea of the Asano contraction is to obtain FN(fl, z) by "cont rac t ion"  
of polynomials in few variables so as to relate the properties of  zeros of the 
small polynomials to the zeros of FN(fl, z). In the present case of a six-vertex 
model, the main problem of finding the small polynomials to build up Fn(fl, z) 
has already been solved in a more general context by Hintermann and 
Gruber. (16,17) The following discussion uses results established in Ref. 17. 

The first step is to conform with the notations of Ref. 17. Associate a dot 
to each spin a = - 1 as indicated in Fig. lb and compare the resulting con- 
figurations with those shown on p. 189 of Ref. 17. We then find the following 
relationships between the vertex weights wj of Ref. 17 and the vertex weights 
oJj defined in Section 2: 

( w l ,  w~,. . . ,  ws) = {,o~, ,o6, O, O, ,o4, ,08, ~,1, ','2}, r = 1 

= {o~5, o~6, 0,  0,  oJ1, oJ2, ws ,  oJ4}, r = 2 ( A 1 )  

= {oJs, oJr, 0,  0,  ~o3, oJr o~2, oJ1}, r = 3 

where r = 1, 2 (1, 2, 3) for the square (triangular) lattice. 
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Following Ref. 17, we put  wj = exp(-f lej)  and adopt  the convention 
ej = 0 if wj = 0, j = 1, 2 ..... 8. Then f rom (6) we have 

- f l {e l  .... , es} = {In clz, In clz -1, O, O, In x l ,  In x l ,  0, 0}, r = 1 

= {In c2z, In c2z-1, O, O, O, O, In x2, In x2}, r = 2 (A2) 

= {In caz, In caz-1, O, O, In xa, In x3, 0, 0}, r = 3 

Notice that  the energies ej for r = 1 and 3 are identical except for the differ- 
ence in the subscripts. Next, as in the conventions given in p. 190 of  Ref. 17, 
we associate to each vertex a local Hamil tonian - H c  such that 

He(Xj) = ej, j = 1, 2,..., 8 (A3) 

where Xj refers to the spin configurations. Write 

4 4 

-H~ =Jo + ~ J~a~+�89 ~ J~a,~ (A4) 
i=l i # k = l  

where el,-.., a~ are the four spins surrounding a vertex and a~ = (r~a k. We 
find with 

JB = --~ %(Xj)es (A5) 
j = l  

aB(X,) = (-- 1)lBr~x, I, B e {(i), (i, k)),,k =1 ..... 4 

(4fl){Jo, J1 = ,/2 = Ja = A ,  Jlz = Jag, Aa  = J2,,  &4 = Jza} 

= {In c ,x l ,  In z, In clx l ,  ln(c,/x,),  ln(c,/x,)}, r = 1 

= {In c2x=, In z, ln(c2/x2), ln(c2/x2), In czx2}, r = 2 (A6) 

= {In caxa, In z, In c3xa, ln(c3/xa), ln(ca/Xa)}, r = 3 

We now have the identity 

Z~'  = 2N (A7) 

where 2N is the partit ion function o f  the constrained lsing model described 
by the Hamil tonian (A4)-(A6) and in which only the configurations with 
wj # 0 are allowed. As in Ref. 17, since each lattice site o f  the Ising model 
belongs to two constraints, each of  which giving a field contribution J~ = 
(4f l ) -~lnz,  the field activity variable is simply z~ = exp ( -4 f l J~ )=  z -~, 
i = 1, 2, 3, 4. Similarly, the two-body activities are 

zij = e x p ( -  2flJij) e {(c,x~)- u2, (x,/c~)ll=} 

and we have 

ZN = 2~(z,  z,j) (A8) 
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The next step is to study Zz~- for independent z, cT, x~. This can be 
achieved by means of the Asano contractions of  small polynomials. ~15~ 
Since, in the notations of Ref. 17, Eq. (A4) implies ~ ~ ~| and we have 
trivially ~ ~ ~ ,  we can use the prescription ofp .  233 of Ref. 17 to find the 
following small polynomial: 

M~ = 1 + Z14Zx3Z24Z23(ZlZ 2 + Z3Z4) 
"4- Z12213Z24Za4(Z1Z 4 "Jr Z223) "~- ZIZ2Z3Z ~ (A9) 

associated with the constraints. Since only the variables z~ undergo one 
contraction and the two-body activities undergo no contractions, we can 
consider the products of the two-body activities as complex parameters. I t  is 
then necessary to study only the following type of local polynomial: 

M~(z l ,  z2, z3, z , )  = 1 + ul(zlz2 + z3z,)  

+ u2(zxz~ + z2z3) + z~z2z3z, (AIO) 

with 

Let ul,  us ~ C. Since 

we have 

{ul,  u2} = {x lc~ l ,  c{  1}, r = 1 

= {c~ 1, x2c~ 1), r = 2 

= {x3cs 1, cd- 1), r = 3 

min Re(ukzizj )  = - l u ~ l p  = 
Iztt , lzjl< a 

Re Me(z1,  z2, z3, z4) /> 1 - 2@11 + lu~l)p = - p *  

for [z d < p, i = 1, 2, 3, 4. It  follows that 

Mc(z l ,  z~, zs ,  z4) # 0 

for 

Iz, I = < [1 + ( lu: l  + lu=l)~] 1'= - lull - lull 

(A11) 

The case in which we are interested concerns two independent complex 
variables z and/3. A straightforward calculation shows that there exists a 
3 > 0 such that 

8 < [1 + @11 + lu21)2] 1'= - lull  - lull  

whenever Re fl >/0, IIm/31 ~< r where E = supr eT and q > 4. This 
establishes property (ii) for Z '  and, consequently, for F•(fl, z). 

(A12) 
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